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1. An Introduction to the “Hard Disks” in a Box Model

As an attempt to better understand the physical properties of atoms and how they
interact together on a quantum level, physicists have looked toward models based upon
hard spheres for insight. Similar in spirit to the underpinnings of the Boltzmann model,
the hard spheres model sets a foundation upon which to frame this topic and begin to
tackle interesting problems. In order to simplify matters, we can study this model in two-
dimensional space; accordingly, we can now speak of these hard spheres as hard disks.
As a consequence of its rich, mathematical structure, this hard disks model has recently
attracted both statistical physicists and mathematicians. In its simplest form, the hard
disks model studies the nature of packing some number n of identical disks each with an
arbitrary radius r into a unit square under the constraint that no two disks overlap. This
idea is very old and dates back to the original models by the first atomists.

While Graham and others have done work to find the greatest possible radius for a
various number of disks [6] [1], this paper instead focuses on the topological properties
of the configuration space. By identifying each disk by its center’s coordinates in (0, 1)2

and juxtaposing these n ordered pairs to create a 2n-tuple, each possible configuration
of n disks corresponds to a point in the Euclidean space R

2n. With this embedding into
Euclidean space, we can adjoin this set with a topology. The result is commonly called the
configuration space.

Recent research has examined implications of this model from many different angles.
For instance, work by Werner Krauth has shown that when there are many disks and ap-
proximately 72 percent of the unit square can be covered by those disks, a phase transition
occurs as has been confirmed by empirical experiments [9]. On the other hand, some re-
search has approached this model from a statistical mechanics angle [8]. Among researchers
in that camp, it is widely believed that the configuration space is connected, for if not,
the Metropolis Markov process is not ergodic. Surprisingly, we will show that this is not
true. This is one of the major facets of this paper; even in the case with just 5 disks, the
configuration space is complex enough to evade many of the simple properties that these
spaces were assumed to have.

The hard disks model has practical applications as well. Because of the strong relation-
ship between the ability of molecules to freely move and the phase of the matter (solid,
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liquid, gas) these molecules induce, there is much concern to understand how these disks
can move about as their radii change. One way to approach the issue of the disks’ mo-
bility is by determining how the number of disjoint components varies with the radius r.
However, as of now, those researching this problem understand “very, very little about the
topology of the set,” including the connectedness of this space [3]. Hence the structure of
π0—the set of path components for a given radius and number of disks—is the primary
concern of this paper. In this way we will be able to show the configuration space is not
connected.

One strategy is to work under the framework of hierarchical clustering. After defining
a metric between points in the configuration space, one can study how the connectedness
of the space changes as the maximum allowable distance between points is increased. This
paper’s idea resembles the agglomerative approach, i.e., increasing an energy threshold
E until each pair of clusters finally becomes one. Using terminology from the literature,
we are “softening” the disks by relaxing the constraint no two disks can overlap. The
interesting caveat of this strategy is our choice of metric: given two different points in
the configuration space, the distance between them is defined as the minimum (over all
paths between the two points) of the maximum energy required to move from one point to
another. However, while this metric is much better suited to study this problem in hard
disks than say the Euclidean metric, it is also much harder to calculate. This is the need
for our computational algorithm.

This algorithm is the main feature of this paper: with a synthesis of pre-existing algo-
rithms, we have been able to describe the persistent homology π0 for 2, 3, 4 and 5 disks as
the radius r varies. More importantly, the advantages of using this algorithm over others is
underscored by its ability to detect components in the case of 5 disks that otherwise would
go unnoticed.

2. Choosing an Energy Function with the Configuration Space

From now on, given some number of disks n and radius r of these disks, let us define
the configuration space Config(n; r). For any x ∈ [0, 1]2n, let us write x in the form
(x1, . . . , xn) so that xk ∈ R

2 represents the center of a particular disk for each 1 ≤ k ≤ n.
Then we define the configuration space to be the set

(1) {x = (x1, . . . , xn) ∈ [0, 1]2n | d(xi, xj) ≥ 2r for any i 6= j}

where d is the Euclidean distance for R
2. Note there is a subtle detail in this definition

of the configuration space; if there were n hard disks with radius r embedded in the unit
square, the coordinates of the center of each disk would have to be between r and 1 − r.
Later in this paper when we work out calculations for explicit n, we will introduce the
notation of ConfigBox(n; r) to address this subtlety. However, in order to alleviate the
annoying technicality of having the boundary of this space vary with r when we only care
about the connectedness of this space, we instead let the centers’ coordinates vary from
0 to 1. Because π0 is invariant under any scaling of the entire space, we can scale down
these coordinates appropriately later to embed them in [r, 1 − r]2n without altering the
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connectedness. Also, on another note, by granting Config(n; r) the subspace topology
from the bigger Euclidean space, we can talk about the topological structure of the space.

In order to work with hierarchical clustering, we next need some energy function E :
[0, 1]2n → R. So given n disks each with radius r, one possible candidate is

(2) E(x) =

{

0 : x ∈ Config(n; r)
1 : x /∈ Config(n; r)

The problem though is that this energy function depends on r and worse yet, it is not
differentiable on [0, 1]2n. However, by softening the disks—that is, allowing the disks now
to overlap—while we do lose some information about the space information we can utilize
a family of functions that are differentiable:

(3) Em =
∑

i<j

1

d(xi, xj)2m
for any positive integer m.

We claim these functions behave like the candidate E(x) in (2) as m → ∞. Suppose
y, z ∈ [0, 1]2n. Let us define ry = max{r ∈ R|y ∈ Config(n; r)} and similarly for rz. Note
that for any m ∈ N,

(4) Em(y) =
∑

i<j

1

d(yi, yj)2m
≥

(

1

2ry

)2m

and similarly

(5) Em(z) =
∑

i<j

1

d(zi, zj)2m
≤

(

n

2

) (

1

2ry

)2m

Using these inequalities, we note that if 0 < ry < rz, then we must have

(6)
Em(y)

Em(z)
=

∑

i<j

d(yi, yj)
−2m

∑

i<j

d(zi, zj)
−2m

≥ (2ry)
−2m

(

n
2

)

(2rz)−2m
=

(

n

2

)

−1 (

rz

ry

)2m

which tends to infinity as m → ∞. Thus once m is large enough, we see that Em(y) >
Em(z) if and only if ry < rz, and moreover, configurations that have a smaller minimum
distance between disks are penalized increasingly more as m increases. Practically speak-
ing, this means that as we increase m, we are hardening the disks. The greatest advantage
of using these functions is that they are differentiable whenever defined and now permit
flows along the gradient.
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3. Identifying Stable Equilibria (Vertices)

Now that we have specified our particular family of energy functions, we can transform
the problem of determining the structure of this amorphous, subspace of R

2n into a discrete
problem. Note that as r decreases and new components emerge, they will actually be local
minimums for the above energy functions provided m is large enough. Hence we really
only need to focus on the various local minima.

In order to attain these, we use an algorithm denoted flowGradient. We start by picking
a point p0 uniformly randomly from the set [0, 1]2n. After specifying some small step size
ǫ > 0 and energy function Em, we recursively generate a sequence of points pk ∈ [0, 1]2n by

(7) pk+1 = pk − ▽Em(pk)

| ▽ Em(pk)|
· ǫ.

By jumping the distance ǫ in the direction opposite the gradient ▽Em recursively, even-
tually a local minima around p0 will be attained. It is worth saying here that if one of the
coordinates of a point pk does not lie in the interval [0, 1], we simply force this coordinate
to be 0 if its negative and 1 otherwise. This projects any point outside of [0, 1]2n directly
back into this space. If this process eventually becomes constant, we call this limit point
an equilibrium. However, if the equilibrium is an isolated point in Config(n; r) for some
r > 0, we call this point a stable equilibrium. These will be the equilibria at immediate
interest. In fact, while a local minimum is always an equilibrium, an equilibrium may not
always be a local minimum.

One example of this is the formation with five disks introduced later called ThreeCorner-
Pents. Though it is an equilibrium, it is not a local minimum. However, this need not
be a bad thing. Including these types of formations does not ever hurt our process, and
in fact sometimes they improve the path-detecting process. Regardless, by flowing along
these gradients, we are able to turn the problem of examining Config(n; r) for all r into
a finite problem of finding the paths connecting these equilibriums with the lowest energy
threshold.

Finally, there is one huge benefit of using this flowGradient method instead of just
trying to sample randomly from the configuration space. When r approaches the values
where Config(n; r) becomes empty, the probability of obtaining a point in Config(n; r) by
sampling uniformly randomly from [0, 1]2n is nearly zero. Given that at these larger radii r
most of the important phase transitions are taking place, it is crucial to utilize algorithms
that capture these unlikely points in the space. Thus while there is no guarantee that by
using the flowGradient method all these equilibria will be found, it is by far a better option
in order to understand the connectedness of these spaces.

4. Algorithm to Detect Low Energy Paths

The ultimate goal of the hybrid algorithm is to find the path between two points P0

and P1 in the configuration space which requires the smallest maximum energy over all
points along the path. That is, amongst the set of all continuous parameterizations P =



A COMPUTATIONAL TOPOLOGY APPROACH TO HARD SPHERES IN A BOX 5

Figure 1. This is an example of an equilibrium for 30 disks found after
running the gradientFlow 2000 times with a jump size of .005. Here the
radius of each disk is .088.

{f : [0, 1] → Config(n; r) | f(0) = P0 and f(1) = P1}, we wish to find γ ∈ P such that
sup{E(γ(t)) : 0 ≤ t ≤ 1} = inf{sup{E(f(t)) : 0 ≤ t ≤ 1} : f ∈ P}.

At first glance, this is exactly what an algorithm by the name of the Nudged Elastic
Band Method appears to do. Given some type of differentiable energy function E, the
algorithm begins with the path as a linear interpolation of N points between Pi and Pf .
Much like Newton’s Method, the algorithm then tries to adjust the path recusively so in
the end for any i

(8) ▽E(Pi) · ti)ti = ▽E(Pi) where ti is the unit tangent vector at Pi.

If this holds for all points along the path, then the path is at least in a local minimum
energy threshold. So to accomplish this computionally, at each step in the iteration, the
algorithm proceeds as follows: given a set of N points along the path {P1, P2, . . . , PN},
beginning with i = 2, we calculate the direction vector

(9) Di = (▽E(Pi) · ti)ti −▽E(Pi).

Here the tangent unit vector ti is calculated by normalizing the vector Pi+1 − Pi−1 to
have length 1. Thus by calculating Di for each i and then adding these changes to each
of corresponding points P2, P3, . . . , PN−1, we can move the path toward the optimal one.
This process continues until (7) is reached.

There are two problems with solely using this method. First, if there is some symmetry
along the trajectory of the path, the Nudged Elastic Band Method may actually rip the
path apart rather than optimizing it. Though this is not obvious, this can happen for paths
which are symmetrical with respect to their endpoints. Second and more importantly, this
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method only returns the closest local minimum path. Because the ideal path between two
points could be quite long and complicated, we need something that is better at capturing
the absolute minimum.

Both these problems are handled quite well by simulated annealing. Simulated annealing
is a recursive random process that is very good at closing in on the absolute minimum
without getting trapped in local mins. [3] Simulated annealing is actually just a special
case of the Metropolis algorithm. The general idea is to first define some objective function
F that is trying to be optimized and a desired maximum length L you would like to move
in a single iteration. Then given some point p, we pick some random point p′ in the open
disk D(p, L), and if F (p′) < F (p) then we replace p with p′ and repeat. If not, then we flip

a weighted coin that comes up heads with probability F (p)
F (p′)+F (p) , and if the coin does show

up heads, we still replace p by p′. The strength of this algorithm is its ability to jump out
of local minimums and continue flowing toward a global minimum.

In order to adapt this into our situation, we have made some slight changes. First rather
than defining the objective function to the maximal energy among all the points on the
path, we have instead defined the objective function to be an approximation of the line
integral I:

(10) I =
∑

i

|Pi+1 − Pi| · Em

(

Pi + Pi+1

2

)

≈
∫

P

Em(t) dt.

The reason for using the line integral is that if we only used I = sup{E(Pi))}, we would
frequently be adding noise to parts of the path that wouldn’t improve anything. Hence in
order to only reward energy lowering deviations, we used the line integral as the objective
function. As an added bonus, it also penalizes moves that stretch the path out too much
that would potential rip the continuity apart.

Second, our choice of p′ is made by randomly picking one of the points Pk on the path,
and then moving that the center of that disk by adding some randomly-chosen vector
v ∈ [0, 1]2 normalized to have some randomly-chosen length from [0, L]. In order to promote
continuity, each point along the path is also changed by a scalar multiple of v, with the
points closer to the initial point being moved more than others. This prevents the path
from becoming too disconnected. Though rare, it is worth noting here that whenever we
get a path which contains points whose coordinates lie outside of [0, 1], we simply restart
the algorithm from the beginning.

Third, throughout the entire process, we keep track of the best found path from all
iterations, and we use this path after running the desired number of iterations. This allows
us to use the best found path, and not just the final result from the algorithm.

Accordingly, the hybrid algorithm is a combination of these two methods to generate
the optimal path: by first picking two points and defining the initial path to be the linear
interpolation of N points between them, we run the Metropolis algorithm to get us close
to the optimal path, and then zero into the optimal path via the Nudged Elastic Band.
The result of combining these two methods is surprisingly powerful. As a case study, we
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present the case of determining |π0| for 5 disks in a box. This was also accomplished for 3
and 4 disks, but the case with 5 disks is the most interesting.

5. Case Study: 5 Disks

As outlined by Gunnar Carlsson, there are algorithms that have proven to be quite
powerful to determine the persistent homology of numerous topological spaces [2]. By using
randomly selected data points from a manifold to build a simplicial complex that emulates
the topological structure of the space, many topological properties from the data can be
extrapolated. In fact, using one computer automated version of this algorithm—denoted
JPLEX—it was possible accurately illustrate the persistent homology of Config(n; r) when
n = 2, 3, and 4.

However, as for the case of n = 5 disks, the algorithm began producing some very
irregular results. In order to utilize JPLEX, first 10, 000 points were uniformly randomly
sampled from the space Config(n; r) for some r, and then the first two Betti numbers
(β0, β1) were calculated for various values including the neighboring radius paramater Rmax

and number of landmark points. Landmark points were a set of points chosen inductively,
where the first one was randomly chosen from all available points, and the kth landmark
point was chosen to maximize the distance to the next closest landmark point. The values
for Rmax, listed in the first column, were obtained by taking fractions of the distance R
which measured how finely the landmark points covered the dataset. The values in the
first row are the number of landmark points chosen to represent the data.

Landmark Points

50 100 150 200 250
R/30 (1, 0) (1, 2) (1, 18) (1, 74) (1, 113)
R/20 (1, 0) (1, 0) (1, 15) (1, 52) (1, 64)

Rmax R/15 (1, 0) (1, 0) (1, 2) (1, 13) (1, 44)
R/12 (1, 0) (1, 0) (1, 1) (1, 9) (1, 43)
R/8 (1, 0) (1, 0) (1, 0) (1, 0) (1, 4)

Note here β0 = |π0| was always 1, meaning that the space was supposedly always con-
nected, which will be shown later to be false when r = .18. Unfortunately, JPLEX here
mistook the fractured structure of this space as porous rather than splintered into numerous
little clusters. One likely explanation for this discrepancy is that by randomly sampling
from this space, many of the small disconnected components were simply not observed.
The data points were obtained randomly picking 5 points in the unit square and finding
the minimum distance amongst all pairs of points. If this distance was greater than 2r,
the point was made into a 10-tuple and recorded; otherwise the point was dropped. The
process continued until 10, 000 points were choosen. Because of this naive approach of sam-
pling, only roughly one out of every million iterations was successful. Hence not only was
sampling randomly becoming futile, but JPLEX was having a tough time distinguishing
the very close, though disconnected components. This inspired a new approach.
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Figure 2.

Configuration Energy threshold radius

X formation EX ≈ 132
1

2 + 2
√

2
≈ .207

OneCornerPent EOCP ≈ 373 rOCP =
6 +

√
2 −

√

2 + 4
√

2

18 + 4
√

2
≈ .196

House EH ≈ 436 rH =
5

26
≈ .192

ThreeCornerPent ETCP ≈ 626 rTCP =
1

4 +
√

2
≈ .185

Lambda Eλ ≈ 3577 rλ =
1 +

√
2 −

√
3

4
≈ .171

Before jumping into the substance of the case of 5 disks, for the simplicity of notation,
let us define ConfigBox(n; r) in the same manner the configuration space was originally
defined, but this time notice the coordinates must lie between r and 1 − r:

(11) ConfigBox(n; r) = {(x1, . . . , xn) ∈ [r, 1 − r]2n|d(xi, xj) ≥ 2r ∀i 6= j}
Note now xi ∈ [r, 1− r]2 for each i. In this way, while the computations will be run with

the ideas presented in the theoretically friendly Config(n; r), by scaling down these final
results we can extend these outcomes to the unit box.

Now in order to attain a set of stable equilibria, the flowGradient method was run 25, 000
times with a jump size of .0125, 12000 iterations per outcome, and an energy exponent
of both m = 5 and m = 25. From these 50, 000 points in R

10, removing all duplicates
and symmetries yielded 5 distinct stable equilibria. The five sets of equilibra are shown
in Figure 1 with their corresponding names and energy levels when m = 5. As mentioned
above, note that the Lambda formation is a very unlikely candidate and would be very
difficult to capture by simply randomly sampling from the topological space.

The next step was to determine the paths between these equilibria and their symmetric
counterparts that actually affected the connectedness of the space. For each of these equi-
libria, a corresponding matrix was created that contained all that equilbrium’s symmetries
and permutations. Thus the matrix containing all the permutations and symmetries of the
X formation denoted AllXs was only a 120× 10 matrix, while the four other matrices were
480×10. Finally using the Hybrid algorithm outlined in the past section, we calculated the
minimum energy threshold needed for each path between each pair of the five equilibria
and their permutations.
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Figure 3. Path 1 The least-demanding energy path between two disjoint
components, as it only requires EPath1 ≈ 419 as an energy threshold. The
maximum radius for which this path exists is rPath1 ≈ .1913.

Given that only a few of the paths actually would have small enough energy thresholds
to make an impact, we only focused on paths that returned an energy threshold less than
103 = 1000. While this was far below the energy level needed for the Lambda formations,
these formations were isolated enough from the other equilibria that they really comprised
their own separate case, which we will examine later. After moding out the paths that
were equivalent up to permutation or symmetry, there were only 9 distinct paths.

First note decreasing the radius r toward zero and increasing the maximum energy
threshold are analogous for the purpose of understanding the evolution of ConfigBox(n; r).
Thus to simplify how the evolution of |π0| unfolds, we will only be concerned with raising
the energy threshold E from 0 until all points and paths have been accounted for. We will
partition the interval [0,∞) into other intervals so that as E passes through these intervals,
the value of |π0| may be affected.

Interval 1: E ∈ [0, EX ). Since no points have an energy less than Eλ, the space is
empty here.

Interval 2: E ∈ [EX , EOCP ). At this point, the X formation finally emerges. Since
E < EOCP , there are only the X formation and its permutations. Moreover, as no paths
have yet come into play, they are all disjoint. Hence |π0| = 5! = 120.

Interval 3: E ∈ [EOCP , EPath1). Now the OneCornerPents have emerged, and because
no paths between any points have not been established, these add another 4 × 5! = 480
new components. Thence we have |π0| = 120 + 480 = 600.

Interval 4: E ∈ [EPath1, EPath2). At this point, the first edges finally come into play,
as illustrated in Figure 3. Surprisingly, if this rotation of the five disks is iterated multiple
times, we see that not only can we connect the two components where the path starts and
ends, but all the OneCornerPents which maintain the same cyclical ordering of disks are
connected. To be specific, suppose we label all the disks 1 through 5. Then two components
are unconnected if and only if the 5-cycles in S5 formed by reading off the disks’ numbers
clockwise are not equal. Accordingly, these 480 disjoint components immediately collapse
into 4! = 24 unconnected ones. So we see |π0| = 120 + 24 = 144.
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Figure 4. Path 2 This path connects each House formation to a nearby
OneCornerPent formation. Note the path is monotonic with respect to the
energy function, and thus this path exists whenever r ≤ rH .

Interval 5: E ∈ [EPath2, EPath3). Interestingly enough, the emergence of the next
groups of formations and paths do not change the picture at all. We will handle this
in steps. Note that as soon as E reaches EH and admits the House formations, Path 2
simultaneously emerges connecting these formations to the nearby OneCornerPents. For
any House formation, the Hybrid Algorithm detected a monotone, energy increasing path
to that configuration from a nearby OneCornerPent. Hence EH = EPath2, and |π0| remains
unchanged.

The same is true for the ThreeCornerPents. As soon as E reaches ETCP and these for-
mations appear, they are connected by monotone energy-increasing paths from a nearby
OneConerPent. Again, the beauty of the path being monotonic is that as once this con-
figuration becomes possible for a given radius, it is simultaneously connected to one of the
24 circles for that exact same radius.

So we have seen that for E ∈ [EPath1, EPath3), while new formations emerge, the number
of unconnected components |π0| remains at 144. In fact, while the Hybrid Algorithm re-
turned numerous paths with energy thresholds less than 1000, all of those with thresholds
less than 900 were some composition of Path1, Path2, and paths connecting the Three-
CornerPents. Hence even with our energy threshold E up to 900, there is no change in the
number |π0|.

Interval 6: E ∈ [EPath3, Eλ). Here the picture finally changes. At this energy, there
is a viable path from a OneCornerPent formation to an X formation, as shown in Figure
5. Hence any disk can be shuffled into the center from a OneCornerPent formation, and
accordingly we end up connecting the entire space! So for the first time, the entire space
is connected, and |π0| = 1. However, this is not the end of the story.

Interval 7: E ∈ [Eλ, Eλ + ǫ). At the energy level of E = Eλ, the Lambda formations
finally appear and are actually unconnected from themselves and the other massive con-
nected component. This will imply for a brief instant |π0| = 481, and then |π0| will return
to 1 for all greater E. Surprisingly, we see |π0| is not monotonic E increases, even if E
becomes large!
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Figure 5. Path 3 This path finally comes into existence when r =
rPath3 ≈ .1815 and E ≈ 914. Note that this connects the entire space
once it is admitted.

In order to prove the Lambda formation adds 480 disjoint components for a small interval
of E, we proceed in two steps. First we will show that for the maximal radius rλ, the
Lambda formation is indeed rigid. By rigidity, we mean by interpreting each Lambda
formation as a point in ConfigBox(5, rλ), that point is an isolated point. This is the
subject of our first theorem:

Theorem 1. The Lambda formation is rigid; that is, for some sufficiently small ǫ > 0, if we

denote P as one of the 480 distinct Lambda formations, then ConfigBox(5, rλ)∩D(P, ǫ) =
{P}.

Proof: It suffices to show that if we appropriately stretch and translate P so that its
exterior coordinates are 0 and 1 instead of rλ and 1− rλ, the new point we call P0 is rigid
in the original configuration space Config(5; r). Let us call the new radius after stretching
and translating rλ to be R, and let us label the five circles’ centers such that the three
outer centers now lie at the points p1 = (1, 0), p2 = (0, 0) and p3 = (0, 1), while the other
two centers p4 and p5 are the centers lying inside the triangle △p1p2p3 as shown in Figure
6. By convention, P0 = (p1, p2, . . . , p5).

Suppose that we move each of the pi to another point qi ∈ [0, 1]2, and in this way P0 is
moved to Q = (q1, . . . , q5) ∈ [0, 1]10. We show that for a small enough ǫ, the only possible
choice for Q ∈ D(P0, ǫ) ∩ Config(5, R) is P0 itself. This will be done in two steps. First
we will show that if Q 6= P0, then either q4 or q5 must have changed.

To see why, consider the open disc D(p4, δ) for some very small δ > 0. As δ → 0, the
set D(p4, δ) ∩ D(p1, 2R) nearly becomes the entire half of the disk D(p4, δ) that is closest
to p1. This same relationship holds if we replace p1 with p2. Now note that the angles
∠p1p4p2 and ∠p1p4p5 are actually 5π

6 radians, and so by picking a small enough ǫ, we can
ensure

(12) D(p4, ǫ) − [D(p1, 2R) ∪ D(p2, 2R) ∪ D(p5, 2R)] = {p4}
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Figure 6. Illustration for the following proof.

By exchanging p4 with p5 and using p2, p3, and p4 instead of p1, p2, and p4, we can make
the same conclusions. Most importantly, for this same ǫ, we have

(13) D(p5, ǫ) − [D(p2, 2R) ∪ D(p3, 2R) ∪ D(p4, 2R)] = {p5}
Now define regions D1,D2, . . . ,D5 such that Di = D(pi, ǫ) ∩ [0, 1]2 for all i. We claim

moving just one of the five centers qi from qi to another point in the region Di means that
for some i 6= j, the distance between qi and qj is less than 2R. Note that if Q 6= P0 and
neither q4 nor q5 has moved then least one of q1, q2, or q3 has moved within its respective
region. But as D1−D(p4, 2R) = {p1},D2−D(p4, 2R) = {p2}, and D3−D(p5, 2R) = {p3},
moving q1, q2, or , q3 would force Q /∈ Config(5, R).

Thus at least q4 or q5 has moved also. Next we prove our second step: we show that
regardless of where q1, q2, and , q3 move within their regions, the only places q4 and q5 can
move without getting within 2R to these exterior centers is toward one another. This will
conclude the proof that P is rigid.

Note that for any q1 ∈ D1, we have D(p1, 2R) ∩ D(p4, ǫ) ⊆ D(q1, 2R) ∩ D(p4, ǫ). To
see why, note that D1 − D(p4, 2R) = {p1}. Hence by symmetry, we see that no matter
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where the centers q1, q2, and q3 move, the centers of the inner disks q4 and q5 must lie
in the regions S = D4 − [D(p1, 2R) ∪ D(p2, 2R)] and T = D5 − [D(p2, 2R) ∪ D(p3, 2R)]
respectively.

Let L be the line through p4 and p5. We claim both S and T lie on the same side of
L. Because the angle between L and the line through p4 and p2 is π

3 radians, by choice of
our small ǫ, we can be sure ∂D(p4, ǫ) ∩ S does not intersect L. By symmetry, the same
argument holds for T , and thus we know both S and T lie above L.

Now we claim using this fact, we can show for any q4 ∈ S and any q5 ∈ T , we have
d(q4, q5) ≤ 2R. First note that if q4, q5, and p5 were collinear, then because d(q4, p5) ≤ 2R
and q5 must lie between q4 and q5, we would have d(q4, q5) < 2R. But if these three points
were not collinear, then the angle ∠q4p5q5 must be acute. Here we use the fact that both
S and T lie on the same side of L, and S ⊆ D(p5, 2R) and T ⊆ D(p4, 2R). Remember, by
choosing ǫ sufficiently small, we know ∠p5q4q5 is also acute. Thus as these two angles are
acute, we have that d(q4, q5) ≤ d(p5, q4) ≤ 2R. But note if we have equality then either
q4 = p4 or q5 = p5. Thus w.l.o.g. suppose q5 = p5. Then S − D(q5, 2R) = {p4}, and so
q4 = p4. Thus we see the only possible for q4 = p4 and q5 = p5, and hence Q = P0 as
desired.

�

Thus we know that indeed, the Lambda formation is rigid exactly when the radius is
rλ. However, we can assert something a bit stronger. We claim there is some r∗ < rλ

such that for all r ∈ (r∗, rλ] that the space ConfigBox(5; r) has no less than 480 disjoint
components.

Theorem 2. There is some positive real r∗ < rλ such that for any r∗ < r ≤ rλ, the space

ConfigBox(5; r) retains the 480 unconnected components present in ConfigBox(5, rλ).

Proof: Let X = [0, 1]2n, and let B(r, ǫ) ⊆ X such that

(14) B(r, ǫ) = {x ∈ X| for some y ∈ ConfigBox(n, r) we have d(x, y) < ǫ}

Essentially, B(r, ǫ) is an open subset of X such that a point is included in B(r, ǫ) if and
only if it is within ǫ of some point in the configuration space associated with r. Now, given
the definition of ConfigBox(n, r), we know that for any n and r that this set is semialge-
braic. Accordingly, invoking Hironaka’s triangulation theorem [7], we know that this space
is homeomorphic to some simplicial complex C. Moreover, note that ConfigBox(n, r)
is a closed subset of X, and as X is compact by the Heine-Borel theorem, we know
ConfigBox(n, r) must be compact as well.

However, note that this implies C must also be compact, as homeomorphisms preserve
compactness. But we know each component of a simplicial complex is both an open
and closed subset of the simplicial complex, and thus C must have a finite number of
components. For the set of disjoint components form an open cover of C, and because we
know there must be a finite subcover, the number of components of C must be finite. But
this implies the number of components of ConfigBox(n, r) must be finite too.
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Thus given n = 5 and r = rλ, because there are only a finite number of components, we
can pick some δ > 0 small enough so that B(rλ, δ) is still composed of 480 disjoint compo-
nents. Generally, suppose we identified the T disjoint components of ConfigBox(n, r) as
c1, c2, . . . , cT , and let

(15) ǫi,j = inf{d(x, y)|x ∈ ci and y ∈ cj}
We know ǫi,j ≥ 0, and moreover, we claim ǫi,j > 0. If not, then we would have some

sequence of {(xk)} ⊆ ci and {(yk)} ⊆ cj such that d(xm, ym) → 0. But as each component
is compact, we know that ci would have to intersect cj, and this is a contradiction. Thus
ǫi,j > 0. Hence to find the appropriate δ for our case, we simply take δ = min{ǫi,j |1 ≤ i <
j ≤ 480}, which is guaranteed to be greater than 0.

Finally, consider the function f : X → R which for each x ∈ X, x 7→ rx = sup{r ≥ 0|x ∈
ConfigBox(n, r)}. Note that f is continuous. Moreover, we know that B(rλ, δ) is an open
subset of the closed set X, and hence X \B(rλ, δ) is a closed set. Thus it is also compact.
This implies that f must achieve its maximum on this set, let us denote this value attained
as r∗. We know that r∗ < rλ, for otherwise the point p ∈ X \ B(rλ, δ) giving f(p) = r∗

would also be in B(rλ, δ).
By construction of B(rλ, δ), we see that any path connecting two components must

intersect X \ B(rλ, δ), and for this interval of the path f must attain the value r∗. Thus
for any r ∈ (r∗, rλ] we know all the original paths must remain disjoint, as desired.

�

As an aside, one can prove an even stronger result. In fact, given any positive integer n
and r, for some interval (r∗, rλ] the homotopy type of ConfigBox(n, r) does not change at
all, and accordingly the number of components must remain exactly the same. The proof
is technical and much more involved, and relies on approaches requiring either Stratified
Morse Theory or Min-type Morse Theory [5] [4]. Using this piece of knowledge, we know
for a short interval above Eλ, |π0| jumps up to 481, and then quickly returns back to 1. As
there are no more formations that have yet to be added, we see that the space then remains
connected for all larger E. Hence we have a complete understanding of the evolution of
|π0| over all positive E, even though we do not know the exact values r where π0 changes.

The dendrogram in Figure 7 illustrates the evolution graphically. Interestingly enough,
we see that |π0| is not unimodal with respect to E. The second observation is that even
if the space ConfigBox(n; r) becomes completely connected, there are possibly smaller r
for which the space becomes disconnected again.

6. Concluding Thoughts

As demonstrated in the previous analysis, utilizing an algorithm combining methods in
random processes and gradient flows was not only powerful at dispelling the topological
features of the space, but both its two pieces were crucial for the success of the algorithm.
Without using stimulated annealing first, the nudged elastic band method sometimes ripped
paths apart when the endpoint could be reached by a symmetrical reflection of the starting
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Figure 7. The above dendrogram illustrates the evolution of π0 as E in-
creases from 0. The shaded boxes represent actual components, while the
curved pieces represent the edges adjoining components.
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point. Moreover, because the elastic band method zeroed in on the closing minimum to
the linear interpolation between the starting point and end point, there was no guarantee
that the produced path would necessarily be optimal. For these two reasons, stimulated
annealing was crucial in breaking the symmetries and moving the path closer to a global
minimum.

The elastic band method was also essential. Though simulated annealing is great at
moving in toward a global minimum, the path is slightly perturbed from the actual min-
imum path it was near. Thus because knowing the maximum energy threshold for each
path was necessary to understand the order at which disconnected components became
connected, zeroing in these approximations was key. Because of the differing strengths in
each of these methods, the combination of the two reinforced each other’s efficacy.

As was seen in the case of 5 disks, the evolution of these topological spaces is extremely
complex. In fact, while this algorithm does offer some numerical approaches to understand
the topological connectedness of the space, relatively little is known on the theoretical side
of these spaces. One possible avenue to build upon this work is to apply this approach to
situations with more disks and also different boundary conditions (say a torus instead of
a unit square). While perfectly understanding the evolution of π0 made be unattainable,
uncovering rough estimates for a large number of disks could provide valuable qualitative
information relating to phase changes. Another possible avenue of research would be to
apply this hierarchical clustering to other areas of statistical topology and see if this process
is fruitful in other settings.

Finally, I must thank Matt Kahle, Gunnar Carlsson, and Persi Diaconis for their inspi-
ration and wise guidance throughout this entire project. Without their great ideas, this
concept would not even had been considered. A very special thanks must go out to Matt
Kahle, for his incessant assistance and much needed acumen to provide direction.
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